Фракционный состав нефти

Определение состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и  ректификации.

Нефтяные фракции
Выход фракций нефти

Нефть, газовые конденсаты и их фракции представляют собой многокомпонентную смесь из соединений углеводородов. В составе нефти содержатся сотни органических соединений. Поэтому определение состава этой смеси как совокупности всех входящих в их состав соединений —  сложнейшая и не всегда разрешимая задача.

Расходы на покупку сырой нефти, составляющие около 80% расходов НПЗ, наиболее важный фактор, определяющий рентабельность нефтяной компании. Качество и ценность сырой нефти зависят от ее кривой ИТК, определяющей содержание фракции светлых нефтепродуктов, выкипающих до 360°C, фракции 360-540°C и кубового продукта (>540°C), и содержания примесей, таких как сера, азот, металлы и т.д.

Однако кривая ИТК не отражает химического состава нефтяных фракций, который, в свою очередь, влияет на выход и свойства продукции установок для преобразования и повышения сортности нефтепродуктов на НПЗ. Таким образом, знание кривой ИТК и химической природы фракций сырой нефти имеет чрезвычайно важное значение для улучшения экономических показателей НПЗ. К сожалению, для получение этой информации необходимы лабораторные анализы, требующие больших финансовых и временных затрат.

Основные фракции

Углеводородный газ

Газ, входящий в состав данной нефти состоит в основном  из бутанов (73,9 % мас.) выход газов на нефть составляет 1,5 % мас. Пропан – бутановая фракция будет использована в качестве сырья газофракционирующих установок с целью производства индивидуальных углеводородов, топлива и компонента автомобильного бензина.

Фракция НК-62°С

Фракция НК-62°С будет использована как сырьё для процесса каталитической изомеризации с целью повышения октанового числа.

Фракция 62-85°С

Фракцию 62-85°С называют “бензольной”, она будет использоваться как компонент товарного бензина и для получения бензола.

Фракция 85-120°С

Фракция 85-120°С в смеси с фракцией 120-180°С будет использована как сырье для установки каталитического риформинга с целью повышения октанового числа. Предварительно отправляется на гидроочистку.

Фракция 120-180°С и 180-230°С

Фракция 120-180°С будет использована в смеси с фракцией 180-230°С как компонент реактивного топлива. Реактивное топливо не подходит по температуре вспышки, поэтому нужно удалить часть лёгких компонентов.

Кстати, прочтите эту статью тоже:  Твердые горючие ископаемые

Индивидуальный состав нефтепродуктов

В настоящее время индивидуальный состав продуктов нефти может быть достаточно надежно определен методами газожидкостной хроматографии только для единичных бензиновых фракций. Поэтому индивидуальный углеводородный состав не может быть положен в основу прогнозных методов расчета теплофизических свойств (ТФС) ввиду его недоступности для потребителей.

В то же время фракционный состав и структурно-групповой углеводородный состав могут иметь более плодотворное применение на пути построения методов расчета теплофизических свойств нефти.

Поэтому ниже рассмотрены методики пересчета и экстраполяции кривых разгонок и способы расчета структурно-группового углеводородного  состава фракций.

Фракционный состав нефти

Фракционный состав нефти и нефтепродуктов

Определение данного вида состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и  ректификации.

Совокупность выхода (в процентах по массе или объему) отдельных фракций, которые выкипают в определенных температурных диапазонах,  называется фракционным составом нефти, нефтепродукта или смеси. Для более полной характеристики определяется относительная плотность и средняя молярная масса каждого погона и смеси в целом. По  результатам испарения строят кривую ИТК, которая содержит достаточно полную информацию о составе смеси.

Ректификация по ГОСТ 11011-85 в аппарате АРН-2 ограничивается температурой 450—460 °С из-за возможного термического разложения остатка. Проведение данного вида  исследования нефтей  рекомендуется в устройстве для перегонки АРН-2 по методу ГрозНИИ в колбе Мановяна до температуры выкипания 560—580 °С. При этом не происходит искажения кривой ИТК.

Фракционный состав, особенно светлых товарных нефтепродуктов и широких фракций, часто определяют перегонкой в аппарате Энглера  по ГОСТ 2177-82, что значительно проще ректификации. Кривая  разгонки по Энглеру позволяет достаточно надежно определить  характеристические температуры кипения фракций. Однако при расчете фазовых равновесий предпочтительнее иметь кривую ИТК. Для получения такой кривой предложен ряд эмпирических процедур.

Например, для светлых нефтепродуктов известна методика БашНИИНП. Основываясь на том, что разность температур, полученных при разгонке товарного нефтепродукта по ИТК и по Энглеру, в  определенной точке выкипания нефтепродукта является почти постоянной, можно записать

Характеризация физико-химических свойств (ФХС) узких нефтяных фракций (псевдокомпонентов)

При расчете процессов ректификации многокомпонентных смесей (МКС) необходимо использовать физико-химические и термодинамические свойства всех компонентов, составляющих разделяемую МКС. Поскольку в рассматриваемом случае декомпозиция исходной непрерывной смеси на псевдокомпоненты носит достаточно условный характер, процедура расчета физико-химических свойств отдельных псевдокомпонентов приобретает особое значение.

Кстати, прочтите эту статью тоже:  Ароматические углеводороды (Арены)

Известно [2], что любое химическое вещество обладает совокупностью характеристических констант, причем значения характеристических констант зависят от химического строения молекул вещества. Это положение может быть распространено и на псевдокомпоненты, особенно если значения характеристических констант определены экспериментально.

В качестве основной и минимально необходимой характеристики псевдокомпонента принята его среднеарифметическая (между началом и концом выкипания фракции) температура кипения.

Однако, эта температура не в полной мере характеризует псевдокомпонент, поскольку она не учитывает особенности состава нефтей различного типа (различных месторождений). Для более точной оценки ФХС псевдокомпонентов необходима информация об углеводородном составе фракций.

Эта информация в косвенной форме в кривых ОИ и ИТК содержится. Более того, по закону сохранения масс усредненные (среднеинтегральные) значения псевдохарактеристических констант и вероятного углеводородного состава для фракций, выделенных по сравниваемым кривым  при одинаковых расходных пределах выкипания, должны совпадать (за исключением их температурных пределов выкипания) [2].

Поэтому для оценки углеводородного состава моторных топлив вполне допустимо использование кривой ОИ – как более простой и удобной при экспериментальном определении. Однако при расчете процессов разделения (прежде всего ректификации) необходимо использовать только кривую ИТК.

Для расчетов в качестве псевдохарактеристических констант всех компонентов (псевдокомпонентов) МКС используются стандартные свойства (температуры кипения, температуры фазовых переходов, давления насыщенных паров, плотности газовой и жидкой фаз при стандартных условиях, показатели преломления, вязкости, энтальпий и др.), а также критические свойства. Эти константы характеризуют химическую индивидуальность компонента, т.е. представляют «химический паспорт» вещества. Характеристические свойства являются функциями специфических химических параметров вещества: молярной массы и структуры молекулы вещества [2]:

Фij=fi, химическая формула). (1.1)

 

Из (1.1) следует, что все стандартные свойства оказываются взаимосвязанными и могут быть выражены друг через друга. Так молярная масса какого либо углеводорода (псевдокомпонента) может быть выражена в виде функции от его стандартных свойств: температуры кипения, плотности, показателя преломления и прочих свойств, а также от комбинации этих свойств. В качестве примера можно привести формулы Б. П. Войнова [3], Крега [4] и Мамедова [4] для расчета молекулярной массы углеводородов:

Формулы для расчета молекулярной массы углеводородов

Поэтому количество вариантов расчета ТФС псевдокомпонентов оказывается достаточно большим, что в определенной мере затрудняет их практическое использование.

Для расчета ФХС широких нефтяных фракций, состоящих из нескольких псевдокомпонентов, используется правило аддитивности, т.е. вклад каждой узкой фракции в свойства более широкой фракции определяется относительной концентрацией узкой фракции в более широкой.

Кстати, прочтите эту статью тоже:  Синтез-газ

В УМП процедуры расчета ФХС для непрерывных смесей автоматизированы: пользователь в соответствии с принятой температурной разбивкой кривой ИТК на псевдокомпоненты задает пределы выкипания отдельных псевдокомпонентов (отдельных узких фракций), после чего заполняет спецификацию для каждого выбранного псевдокомпонента, задавая его характеристические свойства, известные пользователю.

В качестве минимально необходимой информации, как уже указывалось, должна быть задана средняя температура кипения псевдокомпонента, а в качестве дополнительной задаются свойства (плотность, показатель преломления и т.д.), известные пользователю. Чем более полно определена эта информация, тем точнее будет охарактеризован каждый псевдокомпонент, а значит, и точнее будут результаты последующего моделирования. Для примера на рис. 1.7 приведены кривые распределения характеристических свойств (tср, p, n) для прямогонного гидроочищенного бензина [2].

Рис. 1.7. Кривые распределения температуры кипения (tср), плотности (p) и показателя преломления (n) фракции прямогонного гидроочищенного бензина

В соответствии с принятым условием достаточно плавного изменения характеристических свойств при изменении температуры кипения отдельных компонентов (число индивидуальных компонентов очень велико) зависимости всех свойств от доли отгона вещества (или от температуры отгона) должны быть также непрерывными.

На основе данной информации могут быть рассчитаны все основные свойства (Tкр, Pкр, Zкр, энтальпийные характеристики) как отдельных псевдокомпонентов, так и среднеинтегральные значения этих свойств для фракции в целом, а также определены вероятные брутто-формулы гипотетических псевдокомпонентов [2].По сути такой же подход используется и при взаимном пересчете кривых ОИ и ИТК.

При этом наличие даже неполной информации (только отдельных свойств для отдельных фракций даже в ограниченном диапазоне изменения доли отгона) позволяет заметно повысить адекватность обобщающей информации. Так, для примера, приведенного на рис. 1.4, учет только одного свойства по фракции в целом (плотность мазута) заметно уточняет вид конечной характеристики (кривая ИТК).

Вам будет интересно:

Добавить комментарий