Установка гидрокрекинга

Назначение

Гидрокрекинг представляет собой каталитический химический процесс, используемый на нефтеперерабатывающих заводах для преобразования высококипящих составляющих углеводородов нефти (тяжелых остатков) в более ценные низкокипящие продукты, такие как:

  • бензин
  • керосин
  • топливо для реактивных двигателей
  • дизельное топливо

Процесс протекает в среде водорода, при повышенных температурах (260-425 °C) и давлениях (12-17 МПа).

В процессе гидрокрекинга высококипящие углеводороды с высоким молекулярным весом сначала расщепляются до низкокипящих низкомолекулярных олефиновых и ароматических углеводородов, а затем они гидрируются.

Любая сера и азот, присутствующие в сырье для гидрокрекинга, в значительной степени также гидрируются и образуют газообразный сероводород (H2S) и аммиак (NH3), которые впоследствии удаляются. В результате продукты гидрокрекинга практически не содержат примесей серы и азота и состоят в основном из парафиновых углеводородов.

Установки гидрокрекинга способны перерабатывать широкий спектр сырья с различными характеристиками для производства широкого набора продуктов. Они могут быть спроектированы и эксплуатироваться для максимизации производства компонента для смешивания бензина или для максимизации производства дизельного топлива.

Сырье и продукты

В зависимости от типа получаемых продуктов установка гидрокрекинга может перерабатывать различные типы сырья.

Сырье

Наиболее распространенные типы сырья:

  • Вакуумный газойль – фракция, поступающая с установки вакуумной перегонки мазута, является наиболее распространенным сырьем для большинства установок гидрокрекинга. Это целевое сырье в том случае, если НПЗ пытается максимизировать общее производство дизельного топлива.
  • Тяжелый газойль коксования – продукт, схожий по фракционному составу с вакуумным газойлем и получаемый на установке замедленного коксования. ТГК может использоваться в качестве сырья установки гидрокрекинга, который ввиду высокого давления и среды водорода лучше справляется с ненасыщенными углеводородами, чем установка каталитического крекинга.
  • Газойль каталитического крекинга. Этот низкокачественный поток дизельного топлива может подвергаться гидрокрекингу для получения реактивного топлива и бензина.
  • Газойль первичной переработки – эта прямогонная фракция дизельного топлива может быть подвергнута гидрокрекингу для увеличения производства бензина путем генерирования дополнительной загрузки нафты для установок риформинга.

Продукты

Гидрокрекинг может производить широкий спектр продуктов в зависимости от того, какое сырье он перерабатывает и как он спроектирован и работает:

  • Дистиллят гидрокрекинга – это высококачественное дизельное топливо (с высоким цетановым числом и низким содержанием серы)
  • Непревращенный остаток ГК – это непрореагировавший вакуумный газойль, продукт с низким содержанием серы, который может быть использован в качестве сырья для установок каталитического крекинга или парового крекинга.
  • Керосин – это высококачественное реактивное топливо с низким содержанием серы и высоким показателем высоты некоптящего пламени.
  • Тяжелый бензин – это высококачественное сырье установок риформинга с умеренным содержанием азота и серы и низким содержанием серы.
  • Легкий бензин – это бензин с низким октановым числом и с низким содержанием серы.
  • Изобутан – ценный продукт на нефтеперерабатывающем заводе с установкой алкилирования, которая требует изобутана в качестве сырья.
Кстати, прочтите эту статью тоже:  Деасфальтизация пропаном

Катализатор

 Катализаторы гидрокрекинга бифункциональны, т.е. имеют два типа активных центров:

  1. Кислотные центры (цеолиты, алюмосиликаты и Al2O3) и
  2. Центры, отвечающие за гидрирование-дегидрирование (металлы – Ni, Co, Mo, W, редко Pt и Pd).
  3. Третьей составляющей является связующий компонент (кислотный компонент – оксид алюминия, алюмосиликаты; оксиды кремния, титана, циркония и др.), задача которого обеспечить механическую прочность и пористую структуру.

Технологическая схема

Существует множество различных запатентованных конфигураций гидрокрекинга.

Также существует ряд различных конфигураций технологического оборудования гидрокрекинга.

  1. Одностадийный. В этой конфигурации используется только один реактор, и непревращенный кубовый остаток из нижней части колонны фракционирования не рециркулируется для повторного крекинга. Для одностадийного гидрокрекинга сырье либо сначала подвергается гидроочистке для удаления аммиака и сероводорода, либо, в реакторы гидрокрекинга помещают слои катализатора для проведения процесса предварительной гидроочистки.Типичная схема установки одностадийного гидрокрекинга: 1 – печь, 2 – реактор гидроочистки, 3 – реактор гидрокрекинга 1-й ступени, 4 – компрессор циркулирующего ВСГ, 5 – сепаратор ВСГ, 6 – абсорбер сухого газа, 7 – фракционирующая колонна, 8 – сепаратор высокого давления, 9 – сепаратор низкого давления, 10 – реактор гидрокрекинга 2-й ступени, 11 – печь
  2. Одноступенчатый с рециркуляцией. Это наиболее часто используемая конфигурация. Непревращенный кубовый остаток из нижней части колонны фракционирования возвращается в реактор для повторного крекинга. Сырье (как и в случае одностадийного крекинга) должно сначала подвергаться гидроочистке для удаления аммиака и сероводорода, либо в реакторы гидрокрекинга помещают слои катализатора для проведения процесса предварительной гидроочистки.

    Типичная схема установки одноступенчатого гидрокрекинга с рециркуляцией: 1 – печь, 2 – реактор гидроочистки, 3 – реактор гидрокрекинга 1-й ступени, 4 – компрессор циркулирующего ВСГ, 5 – сепаратор ВСГ, 6 – абсорбер сухого газа, 7 – фракционирующая колонна, 8 – сепаратор высокого давления, 9 – сепаратор низкого давления
  3. Двухстадийный гидрокрекинг. В этой конфигурации используются два реактора, а непревращенный кубовый остаток поступает во второй реактор для дальнейшего крекинга. Данная конфигурация подразумевает либо наличие отдельного реактора гидроочистки, либо наличие в реакторах гидрокрекинга слоев катализатора гидроочистки. В результате проведения гидроочистки на первой ступени, в реакторе второй ступени практически отсутствует аммиак и сероводород. Это позволяет использовать высокоэффективные катализаторы, которые подвержены отравлению соединениями серы или азота.

    Типичная схема установки двухступенчатого гидрокрекинга: 1 – печь, 2 – реактор гидроочистки, 3 – реактор гидрокрекинга 1-й ступени, 4 – компрессор циркулирующего ВСГ, 5 – сепаратор ВСГ, 6 – абсорбер сухого газа, 7 – фракционирующая колонна, 8 – сепаратор высокого давления, 9 – сепаратор низкого давления, 10 – реактор гидрокрекинга 2-й ступени, 11 – печь

 Предварительный подогрев и реактор гидроочистки

Сырьевой газойль смешивается с потоком водорода под высоким давлением и затем проходит через теплообменник, где он нагревается теплотой продуктов, выходящих из реактора первой стадии гидрокрекинга. Затем сырье затем нагревают в трубчатой печи, после чего газосырьевая смесь поступает в верхнюю часть реактора гидроочистки.

Условия температуры и давления в реакторе гидроочистки зависят от конкретной лицензированной конфигурации гидрокрекинга, свойств сырья, желаемых продуктов, используемого катализатора и других переменных. Давление в реакторе первой ступени может составлять от 3,5 до 20 МПа, а температура может колебаться от 260 до 480 °С. После реактора гидроочистки очищенное сырье поступает в реактор гидрокрекинга.

В реакторы гидрокрекинга и гидроочистки в нескольких точках для контроля температуры в реакторе подают водород. Это необходимо для защиты от возможного неконтролируемого роста температуры в результате реакций гидрокрекинга. Также это поможет избежать возможной дезактивации катализатора вследствие высоких температур.

Реактор гидрокрекинга и блок сепарации 1-й ступени

После того, как газопродуктовая смесь из нижней части реактора охлаждается за счет нагревания сырья, он направляется в сепаратор высокого давления для разделения на три фазы: водородсодержащий газ (ВСГ), углеводородная жидкость и кислая вода. Соединения серы и азота, присутствующие в исходном газойле превращаются в газообразный сероводород и аммиак путем гидрирования, которое происходит в реакторах. Для растворения некоторых сероводородных и аммиачных газов, присутствующих в потоке продукта реакции первой стадии, подается водная промывка. Полученный водный раствор гидросульфида аммония (NH4HS) называется кислой водой и, как правило, направляется на очистку за границы установки.

ВСГ из сепаратора высокого давления направляется в сепаратор, где из него удаляется углеводородный конденсат. После этого ВСГ направляется на прием циркуляционного компрессора. Жидкая углеводородная фаза из сепаратора высокого давления поступает в сепаратор низкого давления. Отходящий газ из сепаратора низкого давления направляется в абсорбер, где разделяется на сухой газ и нестабильную нафту. Жидкие продукты с низа сепаратора низкого давления и абсорбера сухого газа направляются на фракционирование.

Фракционирующая колонна

Фракционирующая колонна может представлять из себя как одну сложную колонну, так и целый блок фракционирования, состоящий из нескольких ректификационных колонн.

Во фракционирующей колонне происходит разделение продуктов гидрокрекинга на головную фракцию (СУГ), нафту, керосин и дизельное топливо, непрореагировавший остаток гидрокрекинга, который затем отправляется в рецикл.

Реактор 2-й ступени

Нижний поток ректификационной колонны состоит из непревращенных углеводородов реактора первой ступени. Этот поток смешивают с водородом высокого давления и рециркулируют в качестве сырья в реактор второй ступени. Сначала его нагревают теплотой продуктов реактора второй ступени, а затем нагревают далее в печи. После этого газосырьевая смесь поступает в верхнюю часть реактора второй ступени. Условия температуры и давления в реакторе второй ступени зависят от тех же переменных, которые определяют условия в реакторе первой ступени.  После того, как газопродуктовая смесь из нижней части реактора охлаждается за счет нагревания сырья, она направляется на блок сепарации 1-й ступени и далее на фракционирование.

 Достоинства и недостатки

Недостатки

  1. большая металлоемкость ввиду рабочих условий процесса
  2. большие капитальные и эксплуатационные затраты
  3. высокая стоимость водородной установки и самого водорода, необходимость строительства установки производства серы

Достоинства

  1. вариативность по сырью и получаемым продуктам
  2. вариативность по аппаратурному оформлению установки
  3. снижение содержания серосодержащих и азотсодержащих соединений в продуктах до минимального уровня
  4. меньшая стоимость катализаторов по сравнению с катализаторами каталитического крекинга

Материальный баланс

Материальный баланс установки гидрокрекинга ПАО «ТАНЕКО».

ВХОД Тыс. тонн/год % мас.
Сырьевая смесь 2812 96,7
Водород 96 3,3
ИТОГО ВЗЯТО 2908 100
     
ВЫХОД    
Углеводородный газ 109 3,7
ВСГ 25 0,8
Бензин 609 20,9
Керосин 371 12,8
Дизельное топливо 1119 38,6
Остаточная фракция (гидроочищенный газойль) 561 19,3
Сероводород 114 3,9
ИТОГО ПОЛУЧЕНО 2908 100

Существующие установки

В настоящее время на отечественных НПЗ функционируют восемь установок ГК, из которых шесть работают по технологии ГК под давлением (15 – 17 МПа). ГК в мягких условиях (5 – 10 МПа) представлен лишь НПК в Рязани (2005 г.).

В 2004 г. ГК с блоком гидродеароматизации ДТ реализован в Перми (ОАО «Лукойл») по технологии T-Star компании Texaco. В 2005 г. на ОАО «Славнефть-Ярославнефтеоргсинтез» (Ярославский НПЗ) был открыт комплекс ГК мощностью 2,14 млн. тонн в год (UOP).

В 2014 – 2017 гг. в эксплуатацию были введены три комплекса глубокой переработки нефти, включающие установки ГК ВГО: «Киришинефтеоргсинтез» (ОАО «Сургутнефтегаз»), АО «ТАНЕКО» (г. Нижнекамск) – мощность каждого составляет 2,9 млн. т/г; ОАО «Лукойл» (г. Волгоград) – 3,5 млн. т/г.

В ходе модернизации, на Хабаровском НПЗ был введен в эксплуатацию современный комплекс ГК (2014 г.). Реконструкция установки гидрокрекинга на заводе «Уфанефтехим», которая должна завершиться после 2019 года.

Основной объект модернизации Орского НПЗ – комплекс гидрокрекинга – был выведен на технологический режим с получением гарантийных показателей в конце августа 2018 года.

Компания НПЗ Статус проекта Мощность млн. т/год Год запуска
ПАО “НК Роснефть”

 

 

Ачинский планируется 2 2022
Комсомольский планируется 2 2021
Новокуйбышевский планируется 2 2021
Рязанская НПК планируется 2,2 2022-2027
Туапсинский планируется 4 2021
Рязанская НПК реализован 2,2 2005
Хабаровский реализован 0,5 2014
ПАО АНК “Башнефть” Уфанефтехим планируется 1,3 2020
Уфанефтехим планируется 1,3+1,3 2020
ПАО “Газпромнефть”

 

Омский планируется 2 2020
Ярославский реализован 2,1 2005
ПАО “Татнефть”

 

АО “ТАНЕКО” планируется 1,8 2022
АО “ТАНЕКО” реализован 2,9 2014
Независимые НПЗ Ильский планируется 0,9 2022
Афипский планируется 2,5 2023
Антипинский планируется 2,7 2023
Орский реализован 1,6 2018
ОАО “ТАИФ” планируется 1 2020
ПАО “Сургутнефтегаз” КИНЕФ реализован 2,9 2014
ПАО “Лукойл” Пермский реализован 3,5 2004
Волгоградский реализован 3,5 2016

Вам будет интересно:

Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить